Emergent normal-state Mottness in the infinite-layer NdNiO2 superconductor - data
Computational study based on density functional plus dynamical mean-field theory (DFT+DMFT) calculations for the normal state electronic reconstruction of pure and hole-doped NdNiO2 superconductor. Our results capture the T-dependence of the electrical resistivity, providing a many particle interpretation of the emergence of pseudogap-like features at low energies as well as the weakly insulating regime seen in experiment.
Figure 1:
source data filename: fig1.grf
data type and format: ascii, readable by grace/xmgrace software (unix).
20 raw datasets, strating after @type xy.
z2 3d Orbitals of Ni
@type xy x: Energy/Frequency (omega) [eV] y: Densiity of State rho(omega) (no units) - Hubbard U = 3.0
@type xy x: Energy/Frequency (omega) [eV] y: Densiity of State rho(omega) (no units) - Hubbard U = 6.0
@type xy x: Energy/Frequency (omega) [eV] y: Densiity of State rho(omega) (no units) - Hubbard U = 9.0
@type xy x: Energy/Frequency (omega) [eV] y: Densiity of State rho(omega) (no units) - Hubbard U = DFT
x2-y2 3d Orbitals of Ni
@type xy x: Energy/Frequency (omega) [eV] y: Densiity of State rho(omega) (no units) - Hubbard U = 3.0
@type xy x: Energy/Frequency (omega) [eV] y: Densiity of State rho(omega) (no units) - Hubbard U = 6.0
@type xy x: Energy/Frequency (omega) [eV] y: Densiity of State rho(omega) (no units) - Hubbard U = 9.0
@type xy x: Energy/Frequency (omega) [eV] y: Densiity of State rho(omega) (no units) - Hubbard U = DFT
z2 3d Orbitals of Ni
@type xy x: Energy/Frequency (omega) [eV] y: Self Energy, Real part (no units) - Hubbard U = 3.0
@type xy x: Energy/Frequency (omega) [eV] y: Self Energy, Real part (no units) - Hubbard U = 6.0
@type xy x: Energy/Frequency (omega) [eV] y: Self Energy, Real part (no units) - Hubbard U = 9.0
x2-y2 3d Orbitals of Ni
@type xy x: Energy/Frequency (omega) [eV] y: Self Energy, Real part (no units) - Hubbard U = 3.0
@type xy x: Energy/Frequency (omega) [eV] y: Self Energy, Real part (no units) - Hubbard U = 6.0
@type xy x: Energy/Frequency (omega) [eV] y: Self Energy, Real part (no units) - Hubbard U = 9.0
z2 3d Orbitals of Ni
@type xy x: Energy/Frequency (omega) [eV] y: Self Energy, Imaginary part (no units) - Hubbard U = 3.0
@type xy x: Energy/Frequency (omega) [eV] y: Self Energy, Imaginary part (no units) - Hubbard U = 6.0
@type xy x: Energy/Frequency (omega) [eV] y: Self Energy, Imaginary part (no units) - Hubbard U = 9.0
x2-y2 3d Orbitals of Ni
@type xy x: Energy/Frequency (omega) [eV] y: Self Energy, Imaginary part (no units) - Hubbard U = 3.0
@type xy x: Energy/Frequency (omega) [eV] y: Self Energy, Imaginary part (no units) - Hubbard U = 6.0
@type xy x: Energy/Frequency (omega) [eV] y: Self Energy, Imaginary part (no units) - Hubbard U = 9.0
Figure 2:
source data filename: fig2.grf
data type and format: ascii, readable by grace/xmgrace software (unix).
24 raw datasets, strating after @type xy. Hubbard U in [eV]
z2 3d Orbitals of Ni
@type xy x: Energy/Frequency (omega) [eV] y: Densiity of State rho(omega) (no units) - Hubbard U = 9.0
@type xy x: Energy/Frequency (omega) [eV] y: Densiity of State rho(omega) (no units) - Hubbard U = 8.9
@type xy x: Energy/Frequency (omega) [eV] y: Densiity of State rho(omega) (no units) - Hubbard U = 8.8
@type xy x: Energy/Frequency (omega) [eV] y: Densiity of State rho(omega) (no units) - Hubbard U = 8.0
x2-y2 3d Orbitals of Ni
@type xy x: Energy/Frequency (omega) [eV] y: Densiity of State rho(omega) (no units) - Hubbard U = 9.0
@type xy x: Energy/Frequency (omega) [eV] y: Densiity of State rho(omega) (no units) - Hubbard U = 8.9
@type xy x: Energy/Frequency (omega) [eV] y: Densiity of State rho(omega) (no units) - Hubbard U = 8.8
@type xy x: Energy/Frequency (omega) [eV] y: Densiity of State rho(omega) (no units) - Hubbard U = 8.0
z2 3d Orbitals of Ni
@type xy x: Energy/Frequency (omega) [eV] y: Self Energy, Real part (no units) - Hubbard U = 9.0
@type xy x: Energy/Frequency (omega) [eV] y: Self Energy, Real part (no units) - Hubbard U = 8.9
@type xy x: Energy/Frequency (omega) [eV] y: Self Energy, Real part (no units) - Hubbard U = 8.8
@type xy x: Energy/Frequency (omega) [eV] y: Self Energy, Real part (no units) - Hubbard U = 8.0
x2-y2 3d Orbitals of Ni
@type xy x: Energy/Frequency (omega) [eV] y: Self Energy, Real part (no units) - Hubbard U = 9.0
@type xy x: Energy/Frequency (omega) [eV] y: Self Energy, Real part (no units) - Hubbard U = 8.9
@type xy x: Energy/Frequency (omega) [eV] y: Self Energy, Real part (no units) - Hubbard U = 8.8
@type xy x: Energy/Frequency (omega) [eV] y: Self Energy, Real part (no units) - Hubbard U = 8.0
z2 3d Orbitals of Ni
@type xy x: Energy/Frequency (omega) [eV] y: Self Energy, Imaginary part (no units) - Hubbard U = 9.0
@type xy x: Energy/Frequency (omega) [eV] y: Self Energy, Imaginary part (no units) - Hubbard U = 8.9
@type xy x: Energy/Frequency (omega) [eV] y: Self Energy, Imaginary part (no units) - Hubbard U = 8.8
@type xy x: Energy/Frequency (omega) [eV] y: Self Energy, Imaginary part (no units) - Hubbard U = 8.0
x2-y2 3d Orbitals of Ni
@type xy x: Energy/Frequency (omega) [eV] y: Self Energy, Imaginary part (no units) - Hubbard U = 9.0
@type xy x: Energy/Frequency (omega) [eV] y: Self Energy, Imaginary part (no units) - Hubbard U = 8.9
@type xy x: Energy/Frequency (omega) [eV] y: Self Energy, Imaginary part (no units) - Hubbard U = 8.8
@type xy x: Energy/Frequency (omega) [eV] y: Self Energy, Imaginary part (no units) - Hubbard U = 8.0
Figure 3:
source data filename: fig3.grf
data type and format: ascii, readable by grace/xmgrace software (unix).
24 raw datasets, strating after @type xy. Occupancy is orbital occupancy, no units.
z2 3d Orbitals of Ni
@type xy x: Energy/Frequency (omega) [eV] y: Densiity of State rho(omega) (no units) - occupancy n=3.0
@type xy x: Energy/Frequency (omega) [eV] y: Densiity of State rho(omega) (no units) - occupancy n=2.8
@type xy x: Energy/Frequency (omega) [eV] y: Densiity of State rho(omega) (no units) - occupancy n=2.6
@type xy x: Energy/Frequency (omega) [eV] y: Densiity of State rho(omega) (no units) - occupancy n=2.6
x2-y2 3d Orbitals of Ni
@type xy x: Energy/Frequency (omega) [eV] y: Densiity of State rho(omega) (no units) - occupancy n=3.0
@type xy x: Energy/Frequency (omega) [eV] y: Densiity of State rho(omega) (no units) - occupancy n=2.8
@type xy x: Energy/Frequency (omega) [eV] y: Densiity of State rho(omega) (no units) - occupancy n=2.7
@type xy x: Energy/Frequency (omega) [eV] y: Densiity of State rho(omega) (no units) - occupancy n=2.6
z2 3d Orbitals of Ni
@type xy x: Energy/Frequency (omega) [eV] y: Self Energy, Real part (no units) - occupancy n=3.0
@type xy x: Energy/Frequency (omega) [eV] y: Self Energy, Real part (no units) - occupancy n=2.8
@type xy x: Energy/Frequency (omega) [eV] y: Self Energy, Real part (no units) - occupancy n=2.7
@type xy x: Energy/Frequency (omega) [eV] y: Self Energy, Real part (no units) - occupancy n=2.6
x2-y2 3d Orbitals of Ni
@type xy x: Energy/Frequency (omega) [eV] y: Self Energy, Real part (no units) - occupancy n=3.0
@type xy x: Energy/Frequency (omega) [eV] y: Self Energy, Real part (no units) - occupancy n=2.8
@type xy x: Energy/Frequency (omega) [eV] y: Self Energy, Real part (no units) - occupancy n=2.7
@type xy x: Energy/Frequency (omega) [eV] y: Self Energy, Real part (no units) - occupancy n=2.6
z2 3d Orbitals of Ni
@type xy x: Energy/Frequency (omega) [eV] y: Self Energy, Imaginary part (no units) - occupancy n=3.0
@type xy x: Energy/Frequency (omega) [eV] y: Self Energy, Imaginary part (no units) - occupancy n=2.8
@type xy x: Energy/Frequency (omega) [eV] y: Self Energy, Imaginary part (no units) - occupancy n=2.7
@type xy x: Energy/Frequency (omega) [eV] y: Self Energy, Imaginary part (no units) - occupancy n=2.6
x2-y2 3d Orbitals of Ni
@type xy x: Energy/Frequency (omega) [eV] y: Self Energy, Imaginary part (no units) - occupancy n=3.0
@type xy x: Energy/Frequency (omega) [eV] y: Self Energy, Imaginary part (no units) - occupancy n=2.8
@type xy x: Energy/Frequency (omega) [eV] y: Self Energy, Imaginary part (no units) - occupancy n=2.7
@type xy x: Energy/Frequency (omega) [eV] y: Self Energy, Imaginary part (no units) - occupancy n=2.6
Figure 4:
source data filename: fig4d.grf
data type and format: ascii, readable by grace/xmgrace software (unix).
4 raw datasets, strating after @type xy.
@type xy x: Temperature [K] y: resistivity (m Omega cm) - occupancy n=3.0
@type xy x: Temperature [K] y: resistivity (m Omega cm) - occupancy n=2.9
@type xy x: Temperature [K] y: resistivity (m Omega cm) - occupancy n=2.8
@type xy x: Temperature [K] y: resistivity (m Omega cm) - occupancy n=2.7
Figure 5:
source data filename: fig3.grf
data type and format: ascii, readable by grace/xmgrace software (unix).
4 raw datasets, strating after @type xy.
@type xy x: Hubbard U [eV], y: orbital occupancy (no units), x2-y2 3d Orbitals of Ni
@type xy x: Hubbard U [eV], y: orbital occupancy (no units), z2 3d Orbitals of Ni
@type xy x: Hubbard U [eV], y: on-site orbital energy [eV], x2-y2 3d Orbitals of Ni
@type xy Hubbard U [eV], y: on-site orbital energy [eV], z2 3d Orbitals of Ni
Research results based upon these data are published at http://doi.org/10.1103/PhysRevResearch.4.043036